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Abstract. We use the matrix product formalism to find exact ground states of two new spin-1 quantum
chains with nearest neighbor interactions. One of the models, model I, describes a one-parameter family
of quantum chains for which the ground state can be found exactly. In certain limit of the parameter,
the Hamiltonian turns into the interesting case H =

∑
i(Si · Si+1)

2. The other model which we label as
model II, corresponds to a family of solvable three-state vertex models on square lattices. The ground state
of this model is highly degenerate and the matrix product states is a generating state of such degenerate
states. The simple structure of the matrix product state allows us to determine the properties of degenerate
states which are otherwise difficult to determine. For both models we find exact expressions for correlation
functions.

PACS. 75.10.Jm Quantized spin models

1 Introduction

Quantum information theory and condensed matter
physics, study many body systems on lattices from com-
plementary points of view. While in condensed matter
physics, one starts from a Hamiltonian and seeks to de-
termine the ground state in some approximate form, in
quantum information theory the emphasis is on the prop-
erties of quantum states, for the quantification of which
many tools have been developed in recent years. The sub-
ject of Matrix Product States (MPS) lies at the borderline
of these two disciplines, since in this formalism, one starts
from a quantum many body state with pre-determined
properties, and then constructs a family of local Hamil-
tonians for which this state is an exact ground state. In
this way, one may find interesting many-body systems for
which the ground state and all its properties, i.e. correla-
tion functions, can be calculated in closed analytical form,
a very rare situation which is usually welcomed in con-
densed matter and statistical physics.

The subject of MPS has a long history in condensed
matter physics, the origins of which can be traced back to
the work of Majumdar-Ghosh models [1] which in turn in-
spired the construction of a larger family of solvable spin
systems by Affleck, Kennedy, Lieb and Tasaki (AKLT)
in [2]. The AKLT construction was further developed
in [3,4] under the name of finitely correlated spin chains
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or in [5,6] under the name of optimal ground states. In its
simplest version, which applies to translational-invariant
systems on rings ofN−sites, a matrix product state gener-
alizes a product uncorrelated state by replacing numbers
by matrices in the following way

|ψ〉 =
d∑

i1,i2,···iN=1

tr(Ai1Ai2 · · ·AiN )|i1, i2, · · · iN 〉, (1)

where Ai, i = 1, · · ·d are a set of matrices, assigned to the
local states |1〉, · · · |d〉 of a site. The normalization of these
states is given by

〈ψ|ψ〉 = tr(EN ), (2)

where E :=
∑d

i=1A
∗
i ⊗ Ai. The dimensions of these ma-

trices are arbitrary and are constrained by symmetry con-
siderations and the details of model construction, i.e. the
range of interaction. One can collect all the matrices in a
vector-valued matrix A as follows

A =
d∑

i=1

Ai|i〉, (3)

and write the matrix product state (1) as

|ψ〉 = tr(A ⊗A · · · ⊗ A), (4)

where the trace is taken over the matrix indices and the
tensor product acts on basis vectors, i.e.

tr(A⊗ B) :=
∑

i,j

(Ai)α,β(Bj)β,α|i, j〉.

http://dx.doi.org/10.1140/epjb/e2008-00143-8
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The simple structure of the state (4) allows an exact
calculation of correlation functions. For example one and
two-point functions of local operators are given by

〈ψ|O|ψ〉
〈ψ|ψ〉 =

tr(EOE
N−1)

tr(EN )
,

〈ψ|OkOl|ψ〉
〈ψ|ψ〉 =

tr(Ek−1EOE
l−k−1EOE

N−l)
tr(EN )

, (5)

where
EO =

∑

i,j

A∗
i ⊗Aj〈i|O|j〉. (6)

In the thermodynamic limit N → ∞, the right hand sides
of the above equations simplify even further, since in this
limit, the eigenvalue(s) of E with largest magnitude dom-
inate the traces.

In recent years, this formalism has been used in de-
veloping exactly solvable models in spin chains [5–11],
spin ladders [12–15], spin systems on two dimensional lat-
tices [16–18], and the study of entanglement properties
of spin systems near the points of quantum phase tran-
sitions [19–22]. It has also been used extensively to find
the stationary states of many types of stochastic systems
of interacting particles in one dimensional chains, see for
example [23–25].

A basic question is then whether we can construct gen-
eral MPS and its parent Hamiltonians having a set of spe-
cific symmetries for quantum chains of spins. For spin-one
systems, the first model was given by Affleck, Kennedy,
Lieb, and Tasaki in [2], (not within the MPS formalism)
which had full rotational symmetry, and was shown later
to correspond to the matrix

Aaklt =
(

|0〉 −
√

2|1〉√
2|1〉 −|0〉

)

, (7)

where |1〉 = | − 1〉 with the parent Hamiltonian

H =
∑

i

Si · Si+1 +
1
3
(Si · Si+1)2. (8)

Then it was shown [5] that if one demands only rotational
symmetry around the z axis in spin space, in addition to
parity and spin-flip symmetries, a more general model can
be constructed which is described by the matrix

A =
(

|0〉 −√
g|1〉√

g|1〉 σ|0〉

)

, (9)

where g is a continuous parameter and σ = ±1 is a discrete
parameter.

At first sight, construction of a matrix product state,
finding its parent Hamiltonian, and calculating the corre-
lation functions, seems a straightforward procedure. How-
ever if one demands symmetry properties, and more im-
portantly demands that the final Hamiltonian have a
physically interesting interpretation, then the problem will
be quite non-trivial and interesting. Specially if one puts
the formal MPS under scrutiny, one may be able to find

many more states which are not themselves MPS repre-
sentable, but have been captured by a single MPS in a nice
way, i.e. as their generating state. This is what we will find
for the models constructed in this paper. We believe that
the richness of matrix product formalism has yet to be
unraveled by studying more and more examples. In this
paper we try to construct two other spin-1 matrix product
models, which have not been reported in the literature of
matrix product states. The first model is a one-parameter
family which has the interesting property to interpolate
between two limits, namely between the Ising-like Hamil-
tonian

H1 =
∑

i

(S2
z,i − 1)(S2

z,i+1 − 1), (10)

and
H2 =

∑

i

(Si · Si+1)2. (11)

The ground state of (11), as we will see, breaks the rota-
tional symmetry of the Hamiltonian. This is an example
of the richness of matrix product formalism, that is by
searching the space of solutions, one may come to cor-
ners where there are very simple and physically interest-
ing Hamiltonians whose ground states are given by MPS.
Clearly the symmetry breaking MPS is not the unique
ground state of (11), however the other ground states,
can be found by applying the symmetry operators of su(2)
group to the MPS.

The other model that we find, labeled as model II,
turns out to correspond to a family of solvable three-state
vertex models on square lattices, [26,27]. In this model
the degeneracy of the ground states, shows itself in a
completely different way, namely, we find that the ma-
trix product depends on a continuous parameter, but the
parent Hamiltonian does not, i.e.

H |ψ(g)〉 = E0|ψ(g)〉. (12)

Thus if we expand the matrix product state |ψ(g)〉 in
terms of the parameter g, in the form

|ψ(g)〉 =
N∑

n=0

gn|ψn〉, (13)

we obtain a large number of states |ψn〉, which all have
the same energy and thus represent part of the degener-
ate ground states of the Hamiltonian. In this way the MPS
plays the role of a generating state for a set of degener-
ate ground states of the Hamiltonian, none of which has
a MPS representation. The degree of degeneracy of the
ground states increases with system size, and each state
|ψn〉 has a complicated structure, and can not be repre-
sented as a matrix product, and thus the calculation of
any of its correlation functions, or even its normalization,
is quite difficult. However from the fact that the generating
state |ψ(g)〉 is a matrix product state, we can determine
such correlations in closed form.

The structure of this paper is as follows: in Section 2 we
briefly review the matrix product formalism, with empha-
sis on the symmetry properties of the state and the parent
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Hamiltonian, in Section 3 we consider three dimensional
auxiliary matrices and classify them according to sym-
metries of the states which are constructed from them,
namely symmetry with respect to rotation around the z-
axis and the discrete parity and spin-flip symmetries. In
this way we arrive at two specific forms of auxiliary matri-
ces and consequently two specific models. Sections 4 and 5
are devoted to the detailed study of the above two models.
The paper ends with a conclusion and an appendix.

2 Symmetries of matrix product state and its
parent Hamiltonian

From (1) we see that the collections of matrices {Ai} and
{λUAiU

−1}, where λ is a scalar, both define the same
matrix product state. This freedom allows us to study
the symmetries of MPS. A MPS will be symmetric under
parity provided that we can find a matrix Π such that

ΠAmΠ
−1 ∝ AT

m

and invariant under spin flip transformation, if we can find
a matrix Ω such that

ΩAmΩ
−1 ∝ Am,

where here and hereafter, Am stands for A−m. As for con-
tinuous symmetries, consider a local symmetry operator
R acting on a site as R|i〉 = Rji|j〉 where summation con-
vention is being used. R is a d dimensional unitary rep-
resentation of the symmetry. A global symmetry operator
R := R⊗N will then change this state to another matrix
product state

Ψi1i2···iN −→ Ψ ′ := tr(A′
i1A

′
i2 · · ·A

′
iN

), (14)

where
A′

i := RijAj . (15)

A sufficient but not necessary condition for the state |Ψ〉
to be invariant under this symmetry is that there exist an
operator U(R) such that

RijAj = U(R)AiU
−1(R). (16)

Thus R and U(R) are two unitary representations of the
symmetry, respectively of dimensions d and D. In case
that R is a continuous symmetry operator with generators
Ta, equation (16), leads to

(Ta)ijAj = [Ta, Ai], (17)

where Ta and Ta are the d− and D−dimensional repre-
sentations of the Lie algebra of the symmetry.

A symmetric MPS need not be the ground state of a
symmetric family of Hamiltonians. To find the symmetric
family of Hamiltonians we should construct the Hamilto-
nian in a specific way. Let us first review how the Hamil-
tonian is constructed in general. From a matrix product

state, the reduced density matrix of k consecutive sites is
given by

ρi1···ik,j1···jk
=
tr((A∗

i1 · · ·A
∗
ik
⊗Aj1 · · ·Ajk

)EN−k)
tr(EN )

.

(18)
The null space of this reduced density matrix includes the
solutions of the following system of equations

d∑

j1,··· ,jk=1

cj1···jk
Aj1 · · ·Ajk

= 0. (19)

Given that the matrices Ai are of size D × D, there are
D2 equations with dk unknowns. Since there can be at
most D2 independent equations, there are at least dk−D2

solutions for this system of equations. Thus for the density
matrix of k sites to have a null space it is sufficient that
the following inequality holds

dk > D2. (20)

Let the null space of the reduced density matrix of k con-
secutive sites, denoted by Vk, be spanned by the orthogo-
nal vectors |eα〉, (α = 1, · · · , s ≥ dk −D2). Then we can
construct the local Hamiltonian acting on k consecutive
sites as

h :=
s∑

α=1

Jα|eα〉〈eα|, (21)

where Jα’s are positive constants. These parameters to-
gether with the parameters of the vectors |eα〉 inherited
from those of the original matrices Ai, determine the to-
tal number of coupling constants of the Hamiltonian. If
we call the embedding of this local Hamiltonian into the
sites l to l + k by hl,l+k then the full Hamiltonian on the
chain is written as

H =
N∑

l=1

hl,l+k. (22)

The state |Ψ〉 is then a ground state of this Hamiltonian
with vanishing energy. The reason is as follows:

〈Ψ |H |Ψ〉 = tr(H |Ψ〉〈Ψ |) =
N∑

l=1

tr(hl,l+kρl,l+k) = 0, (23)

where ρl,k+l is the reduced density matrix of sites l to l+k
and in the last equality we have used the fact that h is con-
structed from the null eigenvectors of ρ for k consecutive
sites. Given that H is a positive operator, this proves the
assertion. For the Hamiltonian to have the symmetries of
the ground state, the basis vectors of the null space should
be chosen so that they transform into each other under the
action of symmetries and the couplings Jα should be cho-
sen appropriately, see [28] for a more detailed discussion
of this point.
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3 Three dimensional auxiliary matrices

As is clear from (20) a sufficient condition for the existence
of a null space V2 for a spin-one system is that the dimen-
sion of the matrices satisfy D2 < 9 which restricts D to
1 and 2. The case of D = 1 has already been considered
in [29] outside the framework of MPS formalism, and the
case of D = 2 has been worked out in [2] and [5] as men-
tioned in the introduction. However we should emphasize
that this is a sufficient and not a necessary condition and
indeed we can take D ≥ 3 and still find a non-empty null
space V2, since the system of equations may not all be
independent of each other.

In this article we want to study in detail the caseD = 3
and consider all the possible models which allow certain
plausible symmetries, i.e. rotational symmetry around the
z axis in spin space, and symmetry under parity and spin
flip operations, these are the symmetries which have been
taken into account in building optimal ground states for
various models [4–8,12,16,17,22].

So let us take 3-dimensional matrices A1, A0 and A1
and demand rotational symmetry around the z axis in spin
space. According to (17), this is equivalent to the following
equations

[Sz, A1] = A1, [Sz , A0] = 0, [Sz, A1] = −A1, (24)

where Sz = diagonal(1, 0,−1). The immediate solution of
these equations is

A1 =

⎛

⎝
0 a 0
0 0 b
0 0 0

⎞

⎠ , A0 =

⎛

⎝
g 0 0
0 h 0
0 0 i

⎞

⎠ , A1 =

⎛

⎝
0 0 0
c 0 0
0 d 0

⎞

⎠ ,

(25)
where a, b, c, d, g, h and i are real parameters. By a trans-
formation Ai −→ SAiS

−1 where S = diagonal(1, a, ab)
we can set the parameters of A1 equal to 1. Symmetry
under parity now requires that there is a matrix Π such
that

ΠAmΠ
−1 = AT

m. (26)

A straightforward calculation gives

Π =

⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠ (27)

and

A1 =

⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ , A0 =

⎛

⎝
g 0 0
0 h 0
0 0 g

⎞

⎠ , A1 =

⎛

⎝
0 0 0
c 0 0
0 c 0

⎞

⎠ .

(28)
Finally we come to the symmetry under spin flip

|m〉 −→ |m〉. It is readily seen that with these matrices
the spin-flip symmetry is automatic, namely we have

ΩAmΩ
−1 = Am, (29)

in which

Ω =

⎛

⎝
0 0 1
0 c 0
c2 0 0

⎞

⎠ . (30)

In order to guarantee that the matrix product state
constructed in this way is the ground state of a Hamil-
tonian with nearest neighbor interaction, we consider the
equation

∑

i,j=1,0,1

cijAiAj = 0, (31)

which can be re-written as a matrix equation for the co-
efficients cij in the form

∑

i,j

Mkl,ijcij = 0. (32)

To have a solution we set

det(M) = 0. (33)

The determinant of M is readily calculated from its ex-
plicit form and is given by

det(M) = (g2 − h2)2(2g2 − h2)c4. (34)

The vanishing of the determinant puts constrains on
the parameters, namely we should have either c = 0, or
h = ±g or h = ±

√
2g, each choice leading to a different

exactly solvable model. We omit the case c = 0 since
it leads to the condition A1 = 0 and hence reduces the
model to an effectively two-state model, moreover in this
case, spin-flip symmetry is lost due to the non-existence
of an invertible matrix Ω. Also it turns out that the other
models with minus signs are equivalent to models with
plus signs, see Appendix A for a demonstration of this
fact. So we are left with two different models which we
label accordingly as model I (when h =

√
2g) and model

II (when h = g) and study them separately in subsequent
sections.

Before proceeding to the models, we need to clarify a
point about the number of parameters. Throughout our
analysis we take N , the size of the lattice to be an even
number. It appears that we have two continuous parame-
ters in the matrix product states, namely g and c. None of
these parameters can be gauged away by similarity trans-
formations or scaling of the auxiliary matrices. However
the MPS depends on only one parameter. To see this, let
us expand the MPS in terms of the states |ψn〉 which are
defined to be linear superposition of all states which have
n 0’s. Note that for an even N , n will also have to be even.
Since in the space of one site, the operators A1 and A1 act
as raising and lowering operators, the trace of any string
of operators A0, A1 and A1 is non-vanishing only if this
string contains an equal number of A1 and A1. Thus any
state |ψn〉 comes with a coefficient gnc

N−n
2 . Consequently

for the un-normalized MPS we have

|ψ(g, c)〉 =
N∑

n=0

gnc
N−n

2 |ψn〉 ≡ c
N
2

N∑

n=0

(
g2

c
)

n
2 |ψn〉. (35)

Thus the normalized state and all the correlation functions
will depend on only one single parameter, namely g2

c . For
this reason we can put c = 1 and so the MPS will depend
on only one single parameter g.
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4 Model I

In this section we study in detail model I. The auxiliary
matrices are

A1 =

⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ , A0 = g

⎛

⎝
1 0 0
0
√

2 0
0 0 1

⎞

⎠ , A1 =

⎛

⎝
0 0 0
1 0 0
0 1 0

⎞

⎠ .

(36)
First we derive the one-parameter family of parent Hamil-
tonians and then calculate the one and the two-point func-
tions.

4.1 The Hamiltonian

Here we have h =
√

2g and the null space V2 is spanned
by one single vector

|e〉 = |00〉 − g2|1, 1〉 − g2|1, 1〉. (37)

We take the local Hamiltonian as hI = 1
(1−g2)2 |e〉〈e| from

which the full Hamiltonian turns out to be

HI(u) = (1 − u2)N +
∑

i

S2
z,iS

2
z,i+1 − 2(1 + 2u)S2

z,i

+ u2(Si · Si+1)2 + u{Si · Si+1, Sz,iSz,i+1}, (38)

where u := g2

1−g2 . When g = u = 0, the Hamiltonian turns
into

H1 =
∑

i

(S2
z,i − 1)(S2

z,i+1 − 1). (39)

In this limit, since A0 → 0, the MPS becomes an ex-
pansion of states consisting only of 1 and 1. Such a state
is clearly the ground state of the Hamiltonian (39), how-
ever, the Hamiltonian (39) has a highly degenerate ground
state, which is not captured by the MPS in this limit. In
fact, any basis state in which no two 0’s are adjacent is
a ground state of this Hamiltonian, with energy E0 = 0.
The number of ground states of H1 is equal to tr(AN ),
where N is the system size and A is the adjacency ma-
trix in which allowed adjacent configurations are desig-
nated by 1 and disallowed configurations by 0. In H1 the
only configuration which lifts the local energy from 0 to
1 is that of two adjacent zeros, so in the basis which we

have chosen, A =

⎛

⎝
1 1 1
1 0 1
1 1 1

⎞

⎠. For large N , we will have

tr(A)N ≈ (1 +
√

3)N , where 1 +
√

3 denote the largest
eigenvalue of A.

When g → 1 (or u → ∞), HI(u) turns, modulo a
multiplicative coefficient, into the following Hamiltonian,

H2 =
∑

i

[(Si · Si+1)2 − 1]. (40)

This is a simple and interesting Hamiltonian and thus our
result implies that its ground state is of the form of an
MPS, with matrices given by (36), for g = 1.

Note that in the limit g = 1, the null eigenvector (37)
becomes a singlet, the spin-0 representation of angular mo-
mentum, implying that the Hamiltonian should be a scalar
which conforms with the form of the Hamiltonian (40).
However the matrices (36) (for g = 1) do not transform
as a spherical tensor operator under angular momentum,
that is the following relations are not satisfied as required
from (17):

[Sz, Am] = mAm

[S+, Am] =
√

2 −m(m+ 1)Am+1

[S−, Am] =
√

2 −m(m− 1)Am−1, (41)

where Sz, and S± are the three dimensional representation
of su(2). This means that the Hamiltonian is symmetric
under the full rotation group, but the ground state, breaks
this symmetry. Therefore other degenerate ground states
can be constructed by applying rotation operators to this
state. However the actual degeneracy is much larger and
it grows exponentially with system size as ( 3+

√
5

2 )N [30].
We should stress that the Hamiltonian H2 corresponds

to a particular point in the class of bilinear-biquadratic
spin-1 chains with the Hamiltonian

H(θ) :=
N∑

i=1

[
cos θ Si · Si+1 + sin θ (Si · Si+1)2

]
(42)

which has extensively been studied by various meth-
ods [31–36].

4.2 Correlation functions

The correlation functions of this model are determined af-
ter lengthy but straightforward calculations starting from
(5) and (6). In the thermodynamic limit, the results are
as follows:

〈Sz,i〉 = 〈Sx,i〉 = 0. (43)

Thus in the ground state, there is no magnetization. Note
that due to rotational invariance in the x − y plane of
spin space, in all the correlation functions below, we can
change x to y or any other direction in the x−y plane. To
describe the other correlation functions, let us introduce
the parameter γ :=

√
g4 + 8. Then we have

〈S2
z,i〉 =

8
γ(3g2 + γ)

, 〈S2
x,i〉 =

g2(3γ + g2) + 4
γ(3g2 + γ)

. (44)

Figure 1 shows the plot of 〈S2
z,i〉 and 〈S2

x,i〉 as a func-
tion of the parameter g. In the limit g → 0, we have
〈S2

z,i〉 → 1, implying that there is no 0 in the expansion of
the state. This is in accord with our picture of the MPS,
since in this limit A0 → 0. Finally for the two point corre-
lations of longitudinal and transverse components of spins
we find

〈Sz,1Sz,r〉 = G||(g) e−(r−2)/ξ|| ,

〈Sx,1Sx,r〉 = G⊥(g) e−(r−2)/ξ⊥ , (45)
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Fig. 1. The average values 〈S2
z 〉 and 〈S2

x〉 for model I. In the
limit g → ∞(u→ −1), the spins lie in the x− y plane.

where the magnitude of correlations are given by

G||(g) = − 4(g2 + γ)
γ(3g2 + γ)2

,

G⊥(g) =
8g2(g2 +

√
2 + γ)2

γ(3g2 + γ)2(g2 + γ)
, (46)

and the longitudinal and transverse correlations are given
by

ξ|| =
1

ln(3g2+γ
2g2 )

, ξ⊥ =
1

ln( 3g2+γ

2+2
√

2g2 )
. (47)

These are plotted in Figure 2. Note that G||(g) =
〈Sz,1Sz,2〉 and G⊥(g) = 〈Sx,1Sx,2〉. In the limit g −→ 0,
where HI becomes an Ising-like Hamiltonian, the above
equations show that transverse correlations vanish, and
longitudinal correlations approach the value −1/2. How-
ever we should note that in this limit, the ground state is
highly degenerate. In fact as stated above, any basis state
in which there are no two adjacent 0’s is a ground state of
H1. However the MPS does not capture this degeneracy,
but is only one of the many ground states. In the limit
g → 1, where the Hamiltonian turns into (40), we have
〈S2

z,i〉 = 4
9 and 〈S2

x,i〉 = 7
9 , and the correlation lengths

tend to ξ|| = 1
ln(3) = 0.910 and ξ⊥ = 1

ln(3/(1+
√

2))
= 4.603.

5 Model II

For this model, the auxiliary matrices are

A1 =

⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ , A0 = g

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , A1 =

⎛

⎝
0 0 0
1 0 0
0 1 0

⎞

⎠ .

(48)

5.1 The Hamiltonian

The null space V2 is spanned by the following two vectors:

|e1〉 =
1√
2
(|01〉 − |10〉),

|e2〉 =
1√
2
(|01〉 − |10〉). (49)

These vectors are eigenvectors of the local two-site Sz op-
erator, are invariant under parity and transform into each
other under spin flip transformation. Therefore if we take
the local symmetric Hamiltonian as

hII = |e1〉〈e1| + |e2〉〈e2|, (50)

where we have set a total multiplicative constant equal to
unity, the final total Hamiltonian is spin-flip and parity
invariant and moreover commutes with the third compo-
nent of spin, i.e. [hII , Sz] = 0. Its explicit form in terms of
local spin operators can be determined after some algebra:

HII =
N∑

i=1

2S2
z,i − {Si.Si+1, Sz,iSz,i+1}

− Si.Si+1 + Sz,iSz,i+1. (51)

This Hamiltonian was first found in [27]. The history is
the following: The exhaustive solutions of the Yang-Baxter
equation, corresponding to a three-state 19-vertex model
on a square lattice were first found in [26]. These solu-
tions reproduced many of the already known exactly solv-
able vertex models in addition to four new models. These
models, labeled I, II, III and IV in [27], were then stud-
ied in detail in [27], where the thermodynamic proper-
ties of these new models, including the partition function
and correlation lengths were derived. Two of these models,
namely models I and II, however allowed a more complete
solution (due to the so called crossing symmetry of the R
matrix, the solution of the Yang-Baxter equation) which
allowed the exact determination of the ground state en-
ergy per site. However the other two models, models III
and IV, lacked this symmetry, and no exact solution for
the ground state energy was given. It could however be
established that such models can be mapped to 6-vertex
models, i.e. two state models with 6 allowed configura-
tions. The Hamiltonian (51) corresponds in fact to the
Hamiltonian of model III in [27], for ∆ = 1, where ∆ is
a particular combination of Boltzmann weights. For its
definition and the Boltzmann weights see [27]. According
to [27], the three-state 19-vertex model corresponding to
this spin chain is defined by the Boltzmann weights shown
in Figure 3.

Note that each Boltzmann weight Rµ,α
ν,β corresponds

to the spin labels, µ, ν, α, β on left, right, bottom and top
links of a vertex and the Rmatrix and correspondingly the
Boltzmann weights have the following symmetries (with
α := −α, etc.):

Rµ,α
ν,β = Rα,µ

β,ν = Rν,β
µ,α = Rµ,α

ν,β
. (52)
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Fig. 2. The correlation functions for longitudinal and transverse components of spins, in model I; a) Correlation lengths; b)
the magnitudes of correlations.

Fig. 3. The independent Boltzmann weights of the two dimen-
sional vertex model corresponding to the quantum spin chain
(51).

The exact correspondence between the Hamilto-
nian (51) and that of model III of [27] is as follows:

HII = H6−vertex +N, (53)

where N is the number of sites of the chain. This corre-
spondence allows to determine exactly the ground state
energy of the corresponding 6-vertex model, for the range
of values of Boltzmann weights of the 6-vertex model
shown in Figure 3. Since the ground state energy of H
is zero, we find the ground state energy of H6−vertex

to be E0 = −N , giving an energy per site equal to
e0 := E0

N = −1.

5.2 The explicit form of the ground states

From the form of the local Hamiltonian one finds that
any state which comprises of only 1’s and 1’s, with no
0’s, is a ground state of this Hamiltonian. The number of
such states is 2N , where N is the size of the system and
their explicit form is |s1, s2, · · · sN 〉, where si ∈ {1, 1}.
However there are other non-trivial ground states, those

which contain also a number of 0’s. The interesting point
is that these kinds of ground states, are nicely captured
by the MPS (48). We can find N such degenerate states.
To see this we note that MPS (48) depends on a contin-
uous parameter g while the Hamiltonian does not. This
dependence is genuine and can not be gauged away by
similarity transformation Am −→ UAmU

−1. Let us ex-
pand the MPS in terms of powers of g in the form

|ψ(g)〉 =
N∑

n=0

gn|ψn〉, (54)

where

|ψn〉 =
′∑

i1,i2,···iN

tr(Ai1Ai2 · · ·AiN )|i1, i2, · · · iN 〉, (55)

and
∑′ implies that in each term only n A0’s exist.

In view of (48) and the definition of MPS (4) the pow-
ers of g enumerate the number of 0’s in each state and so
each |ψn〉 is a superposition of states each of which has
exactly n local 0’s and an equal number of 1’s and 1’s.
Note that since we have taken N to be even, this implies
that n is also an even number.

To determine the explicit form of each state |ψn〉, con-
sider the form of the matrices A0, A1 and A1 in (48). With

|1〉 :=

⎛

⎝
1
0
0

⎞

⎠ , |0〉 :=

⎛

⎝
0
1
0

⎞

⎠ |1〉 :=

⎛

⎝
0
0
1

⎞

⎠ ,

we have

A1 = |1〉〈0|+ |0〉〈1|, A0 = gI, A1 = |1〉〈0|+ |0〉〈1|, (56)

or more compactly

Am = |m〉〈0| + |0〉〈m|, A0 = gI, (57)

where m = 1, 1 and I is the identity matrix. The prod-
uct of any string of matrices Am, m = 1, 1 has a simple
structure. One can easily show that

Am1Am2 · · ·Am2K =
δm1,m2δm3,m4 · · · δm2K−1,m2K |0〉〈0|

+ δm2,m3δm4,m5 · · · δm2K−2,m2K−1 |m1〉〈m2k|. (58)
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Fig. 4. The state |ψN−4〉. All the dots are at the state |0〉,
while those which are connected are at the state |1, 1〉 + |1, 1〉.

This allows us to determine the explicit form of any of the
states |ψn〉. Consider for example |ψN 〉, where there is no
1 or 1. This is a simple state |ψN 〉 = 3|0, 0, · · ·0〉, where
the factor 3 comes from taking the trace of the identity
matrix, related to the product of all the A0 matrices. The
next state is |ψN−2〉 in which two of the zeros have been
replaces by 1 and 1. Using (58) we find that this is a state
of the form

|ψN−2〉 = 2
∑

m<n

(|0, · · · 0, 1m, 0, · · · , 0, 1n, 0, · · · 0〉

+ |0, · · · 0, 1m, 0, · · · , 0, 1n, 0, · · · 0〉), (59)

where the two non-zero spins occur at sites m and n re-
spectively. Let us define |αij〉 := |1i, 1j〉 + |1i, 1j〉 where
the indices denote the sites of the lattice, and all other
sites are occupied by 0. Then |ψN−2〉 = 2

∑
i<j |αij〉. In

view of (58), we find the structure of all other states |ψn〉.
For example we have

|ψN−4〉 =
∑

i<j<k<l

(|αij〉|αkl〉 + |αjkαli〉, (60)

which is pictorially depicted in Figure 4 and

|ψN−6〉 =
∑

i<j<k<l<m<n

(|α〉ij |α〉kl|α〉mn + |α〉ni|α〉jk|α〉lm) . (61)

Finally we find ψ0, in which there are no zeros, and has a
dimmerized or Majumdar-Ghosh like structure, namely

|ψ0〉 =
|α12〉|α34〉 · · · |αN−1,N 〉 + |α23〉|α45〉 · · · |αN,1〉, (62)

which is depicted in Figure 5.

5.3 Correlation functions

We have found that the number of degenerate ground
states of model II, for a chain of size N , is at least 2N +N .
Of these, the 2N states |s1, s2, · · · sN 〉, where si ∈ {1, 1}
are uncorrelated, even for finite-size systems. The other N
states are non-trivial and have MP representations. Here
we calculate the correlation functions for the other types
of states which are correlated. Were it not for the matrix

Fig. 5. The state |ψ0〉 has a Majumdar-Ghosh like structure.
Note that a line here means only an entangled state |1, 1〉+|1, 1〉
and not a spin singlet.

product formalism, such calculation could be very diffi-
cult. As a first step let us determine the normalization
of the states |ψn〉, and then proceed to the calculation of
correlation functions of various operators.

Let us first fix our notation for matrix product opera-
tors, using their general definition (6). We have

ESz = A1 ⊗A1 −A1 ⊗A1 =: U,
ES2

z
= A1 ⊗A1 +A1 ⊗A1 = V,

E = A1 ⊗A1 +A1 ⊗A1 +A0 ⊗A0 =V + g2I. (63)

Let us start by finding the normalization of the states
|ψn〉. It is obvious that for m �= n, 〈ψm|ψn〉 = 0, since
these two states, have different number of zeros in their
expansion. Therefore

〈ψ(g)|ψ(g)〉 =
N∑

n=0

g2n〈ψn|ψn〉. (64)

The left hand side is found from (2) to be

〈ψ(g)|ψ(g)〉 = tr(EN ) = tr(V + g2I)N

=
N∑

n=0

g2n

(
N
n

)

tr(V N−n).

Comparing with the previous formula, we find

〈ψn|ψn〉 =
(
N
n

)

tr(V N−n). (65)

5.3.1 One-point functions

In the thermodynamic limit N −→ ∞ (n = finite), the
traces are simplified by taking only the largest eigenvalues,
but before going to this limit, let us derive closed formulas
for some of the correlation functions. From the nature of
the states |ψn〉, it is obvious that

〈ψn|Sz|ψn〉 = 〈ψn|Sa|ψn〉 = 0, (66)

where a is any direction perpendicular to the z axis. To
obtain the average of S2

z , we note again that for m �= n,
〈ψn|S2

z |ψm〉 = 0 and hence

〈ψ(g)|S2
z |ψ(g)〉 =

N∑

n=0

g2n〈ψn|S2
z |ψn〉. (67)
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〈ψn|Sz,1Sz,r|ψn〉
〈ψn|ψn〉 =

∑r−2
k=0

(
r − 2
k

) (
N − r
n− k

)

tr(UV r−2−kUV N−r−n+k)

(
N
n

)

tr(V N−n)

. (71)

The left hand side is obtained from (5):

〈ψ(g)|S2
z |ψ(g)〉 = tr(ES2

z
EN−1)

= tr(V (V + g2I)N−1)

=
N−1∑

n=0

g2n

(
N − 1
n

)

tr(V N−n), (68)

which in view of (67) gives

〈ψn|S2
z |ψn〉

〈ψn|ψn〉
=

(
N − 1
n

)

(
N
n

) =
N − n

N
, (69)

as expected, since the operator S2
z counts the average

number of 1’s or 1’s in the state. From 〈S2
x +S2

y +S2
z 〉 = 2

and the rotational symmetry around the z axis, we find
for any unit vector a in the x− y plane

〈ψn|S2
a|ψn〉

〈ψn|ψn〉
=
N + n

2N
. (70)

5.3.2 Two-point functions

Let us now derive the two point correlation functions,
〈ψn|Sz,1Sz,r|ψn〉. We have

〈ψ(g)|Sz,1Sz,r|ψ(g)〉 = tr(ESzE
r−2ESzE

N−r)

= tr(U(V + g2I)r−2U(V + g2I)N−r).

Expanding the right hand side and using the diagonal
property of this two-point function, namely that for m �=
n, 〈ψn|Sz,1Sz,r|ψm〉 = 0, we find

See equation (71) above.

The expansion of 〈ψ(g)|S2
z,1S

2
z,r|ψ(g)〉 gives a simple re-

sult, since in this case, the matrix product operator ES2
z

=
V commutes with E, that is

〈ψ(g)|S2
z,1S

2
z,r|ψ(g)〉 =

tr(V (V + g2I)r−2V (V + g2I)N−r)

= tr(V 2(V + g2I)N−2)

=
N−2∑

n=0

(
N − 2
n

)

g2ntr(V N−n), (72)

giving the final distance-independent result

〈ψn|S2
z,1S

2
z,r|ψn〉

〈ψn|ψn〉
=

(
N − 2
n

)

(
N
n

)

=
(N − n)(N − n− 1)

N(N − 1)
. (73)

Finally we come to the two-point function 〈Sx,1Sx,r〉
between transverse components of spins. Here we en-
counter an essential difference with the previous cases, in
that the operator Sx is not diagonal between the states
|ψn〉, i.e. 〈ψn|Sx,1Sx,r|ψm〉 �= 0 for m �= 0. To circumvent
this problem, we do the following expansion, for g and h
two arbitrary variables:

〈ψ(g)|Sx,1Sx,r|ψ(h)〉 =
N∑

n,m=0

gnhm〈ψn|Sx,1Sx,r|ψm〉. (74)

To calculate the left hand side within the matrix product
formalism, we should slightly adapt equations (2), (5) and
(6) to conform to the present situation. Let |φ〉 and |ψ〉
be two matrix product states on the same periodic lattice
of size N , defined by matrices {Ai} and {Bi} respectively.
Then by following the steps which led to (2) and (5) we
find

〈φ|ψ〉 = tr(ẼN ), (75)

where Ẽ =
∑

iA
∗
i ⊗ Bi. The one point function of an

observable O will be given by

〈φ|O|ψ〉 = tr(ẼOẼ
N−1), (76)

where
ẼO =

∑

i,j

A∗
i ⊗Bj〈i|O|j〉. (77)

We now use the above formulas to calculate the left
hand side of (74), where |ψ(g)〉 and |ψ(h)〉 are both matrix
product states with matrices Ai(g) and Ai(h) respectively.
For the operator in question, namely Sx, we find from

Sx =
1√
2
(|0〉〈1| + |0〉〈1| + |1〉〈0| + |1〉〈0|)

the form of its matrix operator,

ẼSx =
1√
2
(gI ⊗ (A1 +A1) + (A1 +A1) ⊗ hI), (78)

which can be simply written as

ẼSx =
1√
2
(gX2 + hX1), (79)
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where X = A1 + A1 and the indices on X means its em-
bedding on the first and second spaces. Thus we obtain

〈ψ(g)|Sx,1Sx,r|ψ(h)〉 =
1
2
tr((gX2 + hX1)

× (V + ghI)r−2(gX2 + hX1)(V + gh)N−r−2). (80)

Expanding the right hand side and collecting the coeffi-
cient of (gh)n will give

〈ψn|Sx,1Sx,r|ψn〉
〈ψn|ψn〉

=

1
2

∑r−2
k=0

(
r − 2
k

) (
N − r − 2
n− 1 − k

)

tr(Ωx
N,r,k,n)

(
N
n

)

tr(V N−n)
, (81)

where

Ωx
N,r,k,n := X2V

r−2−kX1V
N−r−n−1+k

+X1V
r−2−kX2V

N−r−n−1+k. (82)

We now come to the thermodynamic limit of these
correlation functions.

5.3.3 The thermodynamic limit

In this subsection we calculate the thermodynamic limit of
the correlation functions found above, by which we mean
taking N −→ ∞ while keeping r and n fixed. In this limit,
the sums in the numerators of equations (71) or (81) are
dominated by their k = 0 term, therefore we find from
(71)

〈ψn|Sz,1Sz,r|ψn〉
〈ψn|ψn〉

=
tr(UV r−2UV N−r−n)

tr(V N−n)
. (83)

Moreover when taking the traces of V N , we need only
keep the eigenvalue with largest magnitude. The matrix
V has two eigenvalues with largest magnitudes, namely
λ± = ±

√
2, whose corresponding eigenvectors we denote

by |±〉. Their explicit form is

|±〉 =
1
2
(|11〉 ±

√
2|00〉+ |11〉), λ± = ±

√
2. (84)

Therefore by using the fact that N and n are even (see
the discussion preceding Eq. (35)), we arrive at

〈ψn|Sz,1Sz,r|ψn〉
〈ψn|ψn〉

=

1
2
〈+|UV r−2U |+〉 + (−1)r〈−|UV r−2U |−〉

2r/2
. (85)

Using equations (63) and (84) and noting the explicit form
of the matrices A0 = |1〉〈0|+|0〉〈1| and A1 = |0〉〈1|+|1〉〈0|,
we find after a straightforward calculation, that the above

matrix elements vanish unless r = 2. Using the fact that
〈±|U2|±〉 = −1, this will give the correlation function

〈ψn|Sz,1Sz,r|ψn〉
〈ψn|ψn〉

= −1
2
δr,2. (86)

Similarly for the correlation of transverse components we
find from (81) and following a similar reasoning as above
that

〈ψn|Sx,1Sx,r|ψn〉
〈ψn|ψn〉

=
1
2
n

N

tr(Ωx
N,r,0,n)

tr(V N−n)
, (87)

which simplifies to

〈ψn|Sx,1Sx,r|ψn〉
〈ψn|ψn〉

=

n

N

1

2
r+1
2

(〈+|Ωx|+〉 + (−1)r−1〈−|Ωx|−〉), (88)

where Ωx = X1V
r−2X2 + X2V

r−2X1. Obviously this
tends to zero in the limit we are considering, due to the
pre-factor n

N .

6 Discussion

We have made a detailed study of two new spin systems
whose ground states can be found exactly within the ma-
trix product formalism, and have shown that the method
of MPS formalism may be more fruitful than it appears at
first sight. In the space of quantum spin chains solvable by
this formalism, there may be physically interesting models
with rich properties. For example, there may be ground
states which break the continuous symmetries of their par-
ent Hamiltonian, or one may find matrix product states
which capture as a generating state, a large number of
degenerate ground states of a given Hamiltonian. In this
paper we have made an exhaustive study of spin-1 ma-
trix product states with three-dimensional auxiliary ma-
trices and have found two distinct class of models. The
first model is a one-parameter family of models interpo-
lating between the Ising-like Hamiltonian

H1 =
∑

i

(S2
z,i − 1)(S2

z,i+1 − 1),

and the rotationally invariant Hamiltonian

H2 =
∑

i

(Si · Si+1)2.

The ground state of this latter Hamiltonian which is in the
form of an MPS, breaks the rotational symmetry SO(3)
of H2 to that of SO(2). Symmetry generators now will
give other degenerate ground states of H2. The second
model which we have found corresponds to a kind of 6-
vertex model, already studied in [27]. Here the MPS is
a generating state of the degenerate ground states of the
Hamiltonian, none of which may have a simple MPS rep-
resentation. By suitable manipulations of this generating
state, we have been able to find one and two-point func-
tions for these ground states, which are other-wise very
difficult to calculate.
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Appendix A

In this appendix we show explicitly for model II, that the
two different choices h = g and h = −g lead to equivalent
models. A similar analysis applies to model I, which we
omit here. Let h = σg, where σ = ±1. Then it can be
verified that the null space V2 is spanned by the vectors:

|e1〉 =
1√
2
(|01〉 − σ|10〉),

|e2〉 =
1√
2
(|01〉 − σ|10〉). (89)

Writing the local Hamiltonian as usual hII = |e1〉〈e1| +
|e2〉〈e2|, we see that

hII(σ = −1) = (I⊗Rz(π))hII(σ = 1)(I⊗Rz(π)−1), (90)

where Rz(π) is a rotation around z axis by π degrees. Thus
we arrive at

HII(−σ) = RHII(σ)R−1, (91)

where we have taken N to be an even number and R is a
global rotation of the type

R =
⊗

i=0

R2i+1
z (π). (92)

This shows that HII(σ) and HII(−σ) are iso-spectral and
have the same thermodynamic properties and for this rea-
son we have considered only the model HII(σ = 1).
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